Face Recognition in Subspaces
نویسندگان
چکیده
Images of faces, represented as high-dimensional pixel arrays, often belong to a manifold of intrinsically low dimension. Face recognition, and computer vision research in general, has witnessed a growing interest in techniques that capitalize on this observation and apply algebraic and statistical tools for extraction and analysis of the underlying manifold. In this chapter, we describe in roughly chronologic order techniques that identify, parameterize, and analyze linear and nonlinear subspaces, from the original Eigenfaces technique to the recently introduced Bayesian method for probabilistic similarity analysis. We also discuss comparative experimental evaluation of some of these techniques as well as practical issues related to the application of subspace methods for varying pose, illumination, and expression.
منابع مشابه
Face Recognition with L1-norm Subspaces
We consider the problem of representing individual faces by maximum L1-norm projection subspaces calculated from available face-image ensembles. In contrast to conventional L2-norm subspaces, L1-norm subspaces are seen to offer significant robustness to image variations, disturbances, and rank selection. Face recognition becomes then the problem of associating a new unknown face image to the “c...
متن کاملAydınlanma Alt-uzaylarına dayalı Gürbüz Yüz Tanıma Illumination Subspaces based Robust Face Recognition
In this paper a face recognition system that is based on illumination subspaces is presented. In this system, first, the dominant illumination directions are learned using a clustering algorithm. Three main illumination directions are observed: Ones that have frontal illumination, illumination from left and right sides. After determining the dominant illumination direction classes, the face spa...
متن کاملSuper-resolution for Face Recognition Based on Correlated Features and Nonlinear Mappings
For the problem of low recognition rate on low resolution face images, a super-resolution method for face recognition based on correlated features and nonlinear mappings is proposed in this paper. Canonical correlation analysis (CCA) is applied to establish the correlated subspaces between the features of high and low resolution face images, and radial base functions (RBFs) are employed to cons...
متن کاملKernel discriminant transformation for image set-based face recognition
This study presents a novel kernel discriminant transformation (KDT) algorithm for face recognition based on image sets. As each image set is represented by a kernel subspace, we formulate a KDT matrix that maximizes the similarities of within-kernel subspaces, and simultaneously minimizes those of between-kernel subspaces. Although the KDT matrix cannot be computed explicitly in a high-dimensi...
متن کاملA linear discriminant analysis framework based on random subspace for face recognition
Linear Discriminant Analysis (LDA) often suffers from the small sample size problem when dealing with high dimensional face data. Random subspace can effectively solve this problem by random sampling on face features. However, it remains a problem how to construct an optimal random subspace for discriminant analysis and perform the most efficient discriminant analysis on the constructed random ...
متن کاملMulti-module Singular Value Decomposition for Face Recognition
The paper introduces a face recognition method using probabilistic subspaces analysis on multi-module singular value features of face images. Singular value vector of a face image is valid feature for identification. But the recognition rate is low when only one module singular value vector is used for face recognition. To improve the recognition rate, many sub-images are obtained when the face...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011